Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptome Analysis of Poplar Under Salt Stress and Over-Expression of Transcription Factor NAC57 Gene Confers Salt Tolerance in Transgenic Arabidopsis.

Identifieur interne : 000C22 ( Main/Exploration ); précédent : 000C21; suivant : 000C23

Transcriptome Analysis of Poplar Under Salt Stress and Over-Expression of Transcription Factor NAC57 Gene Confers Salt Tolerance in Transgenic Arabidopsis.

Auteurs : Wenjing Yao [République populaire de Chine] ; Kai Zhao [République populaire de Chine] ; Zihan Cheng [République populaire de Chine] ; Xiyan Li [République populaire de Chine] ; Boru Zhou [République populaire de Chine] ; Tingbo Jiang [République populaire de Chine]

Source :

RBID : pubmed:30233602

Abstract

NAC domain genes belong to a large plant-specific transcription factor family, which is well-known to be associated with multiple stress responses and plant developmental processes. In this study, we screened differentially expressed genes (DEGs) and detected mRNA abundance of NAC family by RNA-Seq in the poplar leaves under salt stress condition. A total of 276 up-regulated DEGs and 159 down-regulated DEGs were identified to be shared in Populus alba × Populus glandulosa and Populus simonii × Populus nigra. Among 170 NAC members, NAC57 gene was significantly up-regulated in response to salt stress in the two species. Tissue-specific and salt-responsive analyses indicated the expression pattern of NAC57 gene was spatial and temporal in poplar under salt stress. Particle bombardment results showed subcellular localization of NAC57 was not solely nucleus-targeted. Full-length cDNA sequence of the NAC57 gene was cloned from P. alba × P. glandulosa and transformed into Arabidopsis thaliana. Under salt stress, transgenic Arabidopsis overexpressing NAC57 showed higher seed germination rate, root length, and fresh weight than wild type plants. In addition, the transgenic plants displayed higher superoxide dismutase activity and peroxidase activity, and lower malondialdehyde content and relative electrical conductivity than the wild type under salt stress condition. Furthermore, histochemical staining indicated reactive oxygen species accumulation was lower in the transgenic plants than that in the wild type under salt stress. All the results indicated that the NAC57 gene plays an important role in salt stress responses.

DOI: 10.3389/fpls.2018.01121
PubMed: 30233602
PubMed Central: PMC6131821


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptome Analysis of Poplar Under Salt Stress and Over-Expression of Transcription Factor
<i>NAC57</i>
Gene Confers Salt Tolerance in Transgenic
<i>Arabidopsis</i>
.</title>
<author>
<name sortKey="Yao, Wenjing" sort="Yao, Wenjing" uniqKey="Yao W" first="Wenjing" last="Yao">Wenjing Yao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Kai" sort="Zhao, Kai" uniqKey="Zhao K" first="Kai" last="Zhao">Kai Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Zihan" sort="Cheng, Zihan" uniqKey="Cheng Z" first="Zihan" last="Cheng">Zihan Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Xiyan" sort="Li, Xiyan" uniqKey="Li X" first="Xiyan" last="Li">Xiyan Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Boru" sort="Zhou, Boru" uniqKey="Zhou B" first="Boru" last="Zhou">Boru Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Tingbo" sort="Jiang, Tingbo" uniqKey="Jiang T" first="Tingbo" last="Jiang">Tingbo Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30233602</idno>
<idno type="pmid">30233602</idno>
<idno type="doi">10.3389/fpls.2018.01121</idno>
<idno type="pmc">PMC6131821</idno>
<idno type="wicri:Area/Main/Corpus">000C59</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C59</idno>
<idno type="wicri:Area/Main/Curation">000C59</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C59</idno>
<idno type="wicri:Area/Main/Exploration">000C59</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptome Analysis of Poplar Under Salt Stress and Over-Expression of Transcription Factor
<i>NAC57</i>
Gene Confers Salt Tolerance in Transgenic
<i>Arabidopsis</i>
.</title>
<author>
<name sortKey="Yao, Wenjing" sort="Yao, Wenjing" uniqKey="Yao W" first="Wenjing" last="Yao">Wenjing Yao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Kai" sort="Zhao, Kai" uniqKey="Zhao K" first="Kai" last="Zhao">Kai Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Zihan" sort="Cheng, Zihan" uniqKey="Cheng Z" first="Zihan" last="Cheng">Zihan Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Xiyan" sort="Li, Xiyan" uniqKey="Li X" first="Xiyan" last="Li">Xiyan Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Boru" sort="Zhou, Boru" uniqKey="Zhou B" first="Boru" last="Zhou">Boru Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Tingbo" sort="Jiang, Tingbo" uniqKey="Jiang T" first="Tingbo" last="Jiang">Tingbo Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">NAC domain genes belong to a large plant-specific transcription factor family, which is well-known to be associated with multiple stress responses and plant developmental processes. In this study, we screened differentially expressed genes (DEGs) and detected mRNA abundance of NAC family by RNA-Seq in the poplar leaves under salt stress condition. A total of 276 up-regulated DEGs and 159 down-regulated DEGs were identified to be shared in
<i>Populus alba</i>
×
<i>Populus glandulosa</i>
and
<i>Populus simonii</i>
×
<i>Populus nigra</i>
. Among 170 NAC members,
<i>NAC57</i>
gene was significantly up-regulated in response to salt stress in the two species. Tissue-specific and salt-responsive analyses indicated the expression pattern of
<i>NAC57</i>
gene was spatial and temporal in poplar under salt stress. Particle bombardment results showed subcellular localization of NAC57 was not solely nucleus-targeted. Full-length cDNA sequence of the
<i>NAC57</i>
gene was cloned from
<i>P. alba</i>
×
<i>P. glandulosa</i>
and transformed into
<i>Arabidopsis thaliana</i>
. Under salt stress, transgenic
<i>Arabidopsis</i>
overexpressing
<i>NAC57</i>
showed higher seed germination rate, root length, and fresh weight than wild type plants. In addition, the transgenic plants displayed higher superoxide dismutase activity and peroxidase activity, and lower malondialdehyde content and relative electrical conductivity than the wild type under salt stress condition. Furthermore, histochemical staining indicated reactive oxygen species accumulation was lower in the transgenic plants than that in the wild type under salt stress. All the results indicated that the
<i>NAC57</i>
gene plays an important role in salt stress responses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30233602</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptome Analysis of Poplar Under Salt Stress and Over-Expression of Transcription Factor
<i>NAC57</i>
Gene Confers Salt Tolerance in Transgenic
<i>Arabidopsis</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>1121</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2018.01121</ELocationID>
<Abstract>
<AbstractText>NAC domain genes belong to a large plant-specific transcription factor family, which is well-known to be associated with multiple stress responses and plant developmental processes. In this study, we screened differentially expressed genes (DEGs) and detected mRNA abundance of NAC family by RNA-Seq in the poplar leaves under salt stress condition. A total of 276 up-regulated DEGs and 159 down-regulated DEGs were identified to be shared in
<i>Populus alba</i>
×
<i>Populus glandulosa</i>
and
<i>Populus simonii</i>
×
<i>Populus nigra</i>
. Among 170 NAC members,
<i>NAC57</i>
gene was significantly up-regulated in response to salt stress in the two species. Tissue-specific and salt-responsive analyses indicated the expression pattern of
<i>NAC57</i>
gene was spatial and temporal in poplar under salt stress. Particle bombardment results showed subcellular localization of NAC57 was not solely nucleus-targeted. Full-length cDNA sequence of the
<i>NAC57</i>
gene was cloned from
<i>P. alba</i>
×
<i>P. glandulosa</i>
and transformed into
<i>Arabidopsis thaliana</i>
. Under salt stress, transgenic
<i>Arabidopsis</i>
overexpressing
<i>NAC57</i>
showed higher seed germination rate, root length, and fresh weight than wild type plants. In addition, the transgenic plants displayed higher superoxide dismutase activity and peroxidase activity, and lower malondialdehyde content and relative electrical conductivity than the wild type under salt stress condition. Furthermore, histochemical staining indicated reactive oxygen species accumulation was lower in the transgenic plants than that in the wild type under salt stress. All the results indicated that the
<i>NAC57</i>
gene plays an important role in salt stress responses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yao</LastName>
<ForeName>Wenjing</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Kai</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Zihan</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Xiyan</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Boru</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Tingbo</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">NAC</Keyword>
<Keyword MajorTopicYN="N">Populus alba × Populus glandulosa</Keyword>
<Keyword MajorTopicYN="N">ROS</Keyword>
<Keyword MajorTopicYN="N">salt stress</Keyword>
<Keyword MajorTopicYN="N">transcription factor</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>01</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>07</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30233602</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2018.01121</ArticleId>
<ArticleId IdType="pmc">PMC6131821</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioessays. 2006 Nov;28(11):1091-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Sep;193-194:18-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22794915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Dec 08;6:1092</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26697045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Jun;17(6):369-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22445067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Feb;24(2):482-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22345491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Dec;15(12):1767-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2016 Sep 20;16(1):203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27646344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Jan;176(1):742-756</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29122985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(2):641-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Aug 11;6:615</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26322057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Feb 20;8:181</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28265277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Dec;9(12):591-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2011 Sep;52(9):1569-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21828105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Apr;31(4):452-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21427158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Apr 22;5:151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24795738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2008 Dec;15(6):913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19081078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Oct;5(5):430-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12183182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 Mar;27(3):411-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18026957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2016 Jul 1;198:23-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27123829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2017 Sep;246(3):453-469</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28474114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Feb 18;6:69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25741354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Oct 16;10(10):e1004664</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25330213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2016 Jul;36(7):896-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26941290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 May;25(5):684-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22295908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jan 22;7:4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26834774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1819(2):97-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22037288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Mar;65(5):1229-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24253197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Oct 29;6:902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26579152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Mar;61(6):1041-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409277</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Yao, Wenjing" sort="Yao, Wenjing" uniqKey="Yao W" first="Wenjing" last="Yao">Wenjing Yao</name>
</noRegion>
<name sortKey="Cheng, Zihan" sort="Cheng, Zihan" uniqKey="Cheng Z" first="Zihan" last="Cheng">Zihan Cheng</name>
<name sortKey="Jiang, Tingbo" sort="Jiang, Tingbo" uniqKey="Jiang T" first="Tingbo" last="Jiang">Tingbo Jiang</name>
<name sortKey="Li, Xiyan" sort="Li, Xiyan" uniqKey="Li X" first="Xiyan" last="Li">Xiyan Li</name>
<name sortKey="Yao, Wenjing" sort="Yao, Wenjing" uniqKey="Yao W" first="Wenjing" last="Yao">Wenjing Yao</name>
<name sortKey="Zhao, Kai" sort="Zhao, Kai" uniqKey="Zhao K" first="Kai" last="Zhao">Kai Zhao</name>
<name sortKey="Zhou, Boru" sort="Zhou, Boru" uniqKey="Zhou B" first="Boru" last="Zhou">Boru Zhou</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C22 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C22 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30233602
   |texte=   Transcriptome Analysis of Poplar Under Salt Stress and Over-Expression of Transcription Factor NAC57 Gene Confers Salt Tolerance in Transgenic Arabidopsis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30233602" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020